
Android	debugging	bridge	download

	

https://huntic.ru/c3?utm_term=android+debugging+bridge+download

Android	debug	bridge	install.	Android	debugging	bridge	free	download.	What	is	the	android	debug	bridge.	Android	debug	bridge	meaning.

There	are	many	reasons	to	enable	USB	Debugging	on	your	Android	device.	For	example,	you	can	download	apps	outside	of	the	official	Google	Store	using	your	computer.	It's	also	possible	to	install	custom	ROMs,	transfer	data	between	devices,	and	restore	phones	or	tablets	in	debug	mode.	The	information	in	this	article	applies	to	all	smartphones	and
tablets	running	Android	9.0	Pie,	Android	8.0	Oreo,	and	Android	7.0	Nougat.	In	DéBag	mode,	users	can	access	the	inner	workings	of	their	Android	device	on	a	PC	via	a	USB	connection.	Enabling	USB	Debugging	is	required	to	use	the	Android	Software	Development	Kit	(SDK),	which	a	developer	uses	to	build	and	test	new	applications.	Additionally,	users
can	send	extended	commands	from	Android	Debug	Bridge	(ADB)	computers	to	their	phones.	However,	there	are	several	reasons	why	average	users	want	to	enable	debug	mode.	For	example,	you	can:	In	old	versions	of	Android,	enabling	debug	mode	was	a	prerequisite	for	saving	screenshots,	but	now	taking	screenshots	on	Android	is	much	easier.	To
activate	debug	mode,	you	need	access	to	the	developer	menu,	which	is	hidden	in	your	system	parameters.	Open	your	device	settings	and	tap	on	your	phone	or	tablet.	Tap	on	the	build	number	several	times	until	you	see	a	notification	that	says	“You	are	now	a	developer”.	Return	to	the	main	system,	then	press	developer	options.	If	you're	on	Android	Pie,
you'll	need	to	tap	Advanced	options	to	open	Developer	Options.	Press	the	rocker	switch	in	the	upper	right	corner	to	activate	developer	options	(if	you	haven't	already).	Press	OK	to	confirm.	Press	the	USB	Debugging	switch.	Press	OK	to	confirm.	The	next	time	you	connect	your	device	to	your	computer,	you	will	be	prompted	to	enable	USB	debugging
for	this	computer.	Press	OK	to	confirm.	If	your	Android	device	is	not	recognized	by	your	computer,	you	may	need	to	download	the	appropriate	device	driver.	To	deactivate	USB	Bogging,	go	back	to	the	developer	options	menu	and	press	USB	DE	-Bogging	-Switch	again.	To	reset	a	computer	that	can	access	your	Android	device	in	debugging	mode,	go
back	to	the	developer	options	menu	and	click	USB	Debugging	Reference	-	Aucialization.	Putting	your	device	into	debug	mode	makes	it	more	vulnerable	to	malware	and	external	attacks.	For	this	reason,	you	will	receive	a	security	prompt	every	time	you	connect	your	device	to	a	new	computer.	Do	not	connect	your	device	to	public	charging	networks	or
public	Wi-Fi	networks	with	debug	mode	enabled.	YesIf	you	lose	your	device	when	the	adjustment	mode	is	enabled,	a	technique	-knowledge	thief	can	get	access	to	your	personal	information	without	knowing	your	passwords.	That's	why	you	should	always	turn	off	the	alignment	when	you	don't	need	it.	To	increase	safety,	install	Find	My	Device,	which
you	can	use	or	remotely	delete	the	device	if	it	is	lost	or	stolen.	The	Google	Play	Store	has	apps	that	make	it	easy	to	turn	on	USB	alignment;	However,	given	the	simplicity	of	the	process,	there	is	no	reason	to	download	the	gadget	for	this	purpose.	If	your	Android	device	touch	screen	is	broken	but	still	see	the	screen,	you	can	enable	the	tuning	mode
using	a	mouse	if	the	device	supports	the	On-the-Go	(OTG)	technology.	In	this	case,	connect	the	mouse	with	the	OTG	cable	to	browse	the	device	settings	without	using	the	touch	screen.	Thank	you	for	reporting!	Get	the	latest	technology	news	every	day	to	subscribe	tell	me	why!	To	install	and	use	Android	Debug	Bridge	Utility	(ADB),	download	the
platform	tools	from	the	ADB	page	and	pull	it	out	wherever	you	want.	Open	the	settings	gadget	on	the	phone,	go	to	the	system	page,	press	the	"Create"	button	seven	times	and	connect	the	phone	to	your	computer.	Open	Powershell,	go	to	the	platform	tool	folder	and	run	any	ADB	command.	ADB,	Android	Debug	Bridge,	is	a	command	line	tool	included
in	Google	Android	SDK.	ADB	can	control	your	device	from	your	computer	via	USB,	copy	files	back	and	forth,	install	and	remove	applications,	run	shell	commands	and	more.	We	looked	at	a	few	other	tricks	that	used	to	be	ADB,	including	backup	and	recovery	on	your	smartphone	or	tablet	and	Android	app	installation	on	a	standard	SD	card.	ADB	is	used
for	a	variety	of	Android	smart	tricks.	Step	1:	Download	Platform	tools	go	to	the	Download	page	of	Android	SDK	Platform	Tools.	Select	your	operating	system	link	in	the	download	section.	This	is	how	you	will	download	the	ZIP	file	that	you	can	open	anywhere	where	you	want	to	store	ADB	files	-	they	are	worn	so	you	can	put	them	anywhere.	That's	all	we
need	to	do	now.	Remember	where	you	open	the	files,	we	will	have	to	access	them	later.	The	second	step.	Enable	USB	tuning	on	your	phone.	To	use	ADB	with	an	Android	device,	you	need	to	turn	on	a	feature	called	USB	alignment.	Open	your	phone	app	drawers,	tap	the	settings	icon	and	select	about	the	phone.	Scroll	all	down	and	tap	the	creation
number.Once	upon.	You	should	get	a	message	that	you	are	now	a	developer.	Back	to	the	main	settings	page,	and	in	a	system	called	the	developer	options,	you	should	see	a	new	option.	Open	and	enable	USB	debugging.	Then,	when	connecting	your	phone	to	your	computer,	you	will	see	a	pop	-up	window	called	"USB	Debuggin?".	on	the	phone.	Always
select	the	control	box	on	this	computer	and	click	OK.	Phase	Tre:	Try	ADB	and	install	your	phone	drivers	(if	necessary)	open	the	command	prompt	(PowerShell	and	the	terminal	also	works)	and	go	to	the	directory	where	you	previously	obtained	the	file.	This	can	be	done	by	entering	the	command	below.	Replace	the	destination	of	the	file	with	your:	CD
C:	\	program	files	\	platform	tools.	To	check	if	the	ADB	is	working	properly,	connect	your	Android	device	to	your	computer	with	a	USB	cable	and	follow	this	command:	ADB	device,	if	you	use	a	powershell	or	terminal	with	a	PowerShell	profile,	you	will	need	to	start	the	device	./Adb.	You	should	see	the	listed	device.	If	the	device	is	connected	but	nothing
appears	on	the	list,	the	appropriate	drivers	must	be	installed.	In	most	cases,	your	computer	will	automatically	determine	your	phone	and	install	the	appropriate	drivers.	Otherwise,	you	can	usually	find	device	drivers	in	XDA	developer	forums	or	on	the	manufacturer's	website.	On	Google,	you	can	find	Google	devices	like	Pixel	phones.	Google	is	also	a
list	of	USB	drivers	ordered	by	the	manufacturer	that	will	save	you	a	lot	of	time.	Note.	If	special	instructions	are	provided,	carefully	follow	them	to	install	the	device	drivers.	Open	the	management	of	the	device	(click	Start,	type	the	device	and	submission	management),	find	the	device,	click	the	correct	mouse	button	and	select	the	properties.	If	its
driver	is	not	installed	properly,	you	could	see	a	yellow	call	point.	On	the	Driver	tab,	click	Update	the	driver.	Use	a	driver	search	on	your	computer.	Find	the	drivers	you	downloaded	to	your	device.	Note.	If	you	have	downloaded	drivers	from	OEM	or	Google,	look	for	a	executable	file	or	an	INF	folder	driver.	When	the	device	drivers	are	installed,	connect
the	phone	and	repeat	the	ADB	device	command:	ADB	device	or:	./adbIf	everything	goes	well,	you	should	see	your	device	in	the	list	and	are	ready	to	start	using	Adb!	If	you	always	return	an	ADB	periphery	some	device,	you	can	try	a	few	things:	replace	the	USB	cable	with	a	better	cable,	connect	the	USB	cable	to	another	port.	Connect	the	USB	cable
directly	to	the	USB	ports	of	your	motherboard	(on	the	back),	not	directly	to	the	ports	on	the	front	of	the	computer	or	to	the	USB	concentrator.	Change	the	USB	phone	mode	to	PTP,	MTP	(File	Transfer/Android	Auto)	or	USB	Tethering.	Step	Four	(Optional):	Add	ADB	to	your	system	access	road	as	soon	as	you	are	there,	you	should	access	the	AdB	folder
and	open	the	command	line	every	time	you	want	to	use	it.	However,	if	you	add	it	to	your	Windows	system	path,	if	it	is	not	necessary,	you	can	enter	AdB	from	the	command	line	and	run	commands	whenever	you	want,	no	matter	what	folder	you	find.	The	process	is	slightly	different	in	Windows	11,	10	and	7,	then	read	our	complete	guide	to	change	the
system	path	to	find	steps	to	follow.	Related:	How	to	change	the	path	of	the	system	useful	ADB	commands	for	easy	access	to	the	command	line	in	Windows,	in	addition	to	the	various	tips	that	require	Adb,	ADB	offers	some	useful	commands:	Adb	C:	\	package.APKâ	â	Install	the	package	located	on	C.	:	\	Package.	On	a	computer	on	a	device.	Uninstall	the
package	to	remove	Adb.	For	example,	you	would	use	COM.ROVIO.ANGRYBIRDS	to	uninstall	Angry	Birds.	Adb	Pushâ	C:	\	File/SDCard/File	Put	your	computer	file	into	your	device.	For	example,	the	command	is	inserted	here	by	a	file	located	in	C:	\	File	on	PC	in	Adb	Pull	/SDCard	/File	C:	\	File	â.	direction.	Adb	Logcat	-	displaying	the	Android	device.	This
can	be	useful	for	tuning	applications.	Adb	Shell	-	provides	you	with	an	interactive	Linux	command	line	with	a	device.	Shell	ADB	command	launches	the	specified	Shell	command	on	your	device.	The	ADB	complete	guide	can	be	found	on	Android	Debug	Bridge	on	Google	Android	Developers.	Android	Debug	Bridge	(ADB)	is	a	versatile	command	line	that
allows	you	to	communicate	with	your	device.	The	AdB	command	makes	various	operations	such	as	installing	and	tuning	applications	on	your	device.	AdB	provides	access	to	the	Unix	Shell	that	you	can	use	to	start	different	commands	on	your	device.	A	client	server	program	that	contains	threeThe	customer	sends	to	the	teams.	The	client	works	on	the
development	machine.	You	can	call	a	client	from	the	command	line	terminal	by	introducing	the	ADB	command.	Demon	(ADBD)	that	launches	controls	on	the	device.	The	demon	works	as	a	basic	process	on	each	device.	The	server	that	controls	the	connection	between	the	client	and	the	demon.	The	server	works	as	a	basic	process	on	the	development
machine.	ADB	is	included	in	the	SDK	android	platform	tool	set.	Download	this	package	using	SDK	Manager,	installed	on	Android_SDK/Platform-Tools/.	If	you	need	a	separate	package	for	the	tools	of	the	Android	SDK	platform,	download	it	here.	Information	on	the	connection	of	the	device	using	ADB,	including	the	use	of	the	connection	assistant	to
delete	common	problems,	consult	the	device	connection	using	ADB.	Applications	for	the	start	of	hardware	devices.	How	ADB	works	when	the	ADB	client	is	starting,	the	client	checks	first	if	the	ADB	server	process	has	already	been	started.	Otherwise,	launches	the	server	process.	At	the	start	of	the	server,	it	connects	to	the	local	TCP	port	5037	and

listen	to	the	commands	sent	by	ADB	customers.	Note.	All	ADB	customers	use	port	5037	to	communicate	with	the	ADB	server.	Then	the	server	sets	connections	with	all	the	initiators.	Find	emulators,	scanning	odd	numbers	in	the	5555	to	5585	door,	which	is	the	interval	used	by	the	first	16	emulators.	When	the	server	finds	the	ADB	demon	(ADBD),	it	is
connected	to	this	door.	Each	emulator	uses	a	pair	of	double	transport	doors	for	console	connections	and	a	door	with	an	odd	ADB	connection	number.	For	example:	emulator	1,	console:	5554	emulator	1,	adb:	5555	emulut	2,	console:	5556	emulut	2,	adb:	5557,	etc.	As	shown,	an	emulator	connected	to	the	ADB	through	port	5555	is	similar	to	the
emulator	with	a	console	with	a	console,	listening	to	the	door	5554.	After	the	server	sets	the	connection	with	all	the	devices,	you	can	use	the	ADB	commands	to	access	to	these	devices.	You	can	control	any	device	from	any	client	or	script,	as	the	server	processes	connections	with	devices	and	controls	from	different	ADB	customers.	Turn	on	the	adb
debug	on	the	device.	To	use	ADB	with	a	device	connected	via	USB,	it	is	necessary	to	enable	the	USB	debug	in	the	device	system	settings	through	the	developer	parameters.	On	Android	4.2	and	above	the	developers'	parameters	are	hidden	by	default.	Turn	on	the	developers'	parameters	to	make	it	visible.	Now	you	can	connect	your	device	via	USB.	You
can	check	if	the	device	is	connected	by	starting	the	ADB	device.Phone	book.	If	you	are	logged	in,	the	name	of	the	device	will	be	displayed	as	a	"device".	Note:	If	you	connect	a	device	with	Android	4.2.2	or	newer,	the	system	will	display	a	dialog	box	asking	if	you	want	to	accept	the	RSA	key	that	allows	you	to	debug	this	computer.	This	safety	mechanism
protects	user	devices	because	it	ensures	that	USB	debugging	and	other	ADB	commands	cannot	be	carried	out	if	the	device	cannot	be	unlocked	and	dialog	boxes.	For	more	information	on	connecting	to	the	device	via	USB,	see	starting	the	application	on	the	hardware	device.	Connecting	with	the	device	via	Wi-Fi	Note:	The	instructions	below	do	not
apply	to	utility	devices	with	Android	11.	More	information	is	included	in	the	debugging	textbook	of	utility	applications.	Android	11	and	newer	support	wireless	implementation	and	debugging	of	the	application	from	the	computer	using	Android	Debug	Bridge	(ADB).	For	example,	you	can	distribute	a	debug	-out	application	to	many	remote	devices
without	physical	connection	of	the	device	via	USB.	This	eliminates	the	need	to	solve	typical	USB	connection	problems,	such	as	controller	installation.	Before	debugging	the	wireless	network,	follow	the	following:	Make	sure	the	workstation	and	the	device	are	connected	to	the	same	wireless	network.	Make	sure	your	device	has	an	Android	11+	system
for	telephones	or	Android	13+	on	TVs	and	Wearos	devices.	For	more	information,	see	checking	and	updating	the	Android	version.	Make	sure	the	latest	version	of	Android	Studio	is	installed.	You	can	download	it	here.	Update	to	the	latest	version	of	the	Tools	SDK	platform	set	at	your	workstation.	To	take	advantage	of	wireless	debugging,	pair	a	device
with	a	workstation	using	QR	code	or	pairing	code.	The	workstation	and	the	device	must	be	connected	to	the	same	wireless	network.	To	log	in	on	the	device,	do	the	following:	Enable	programming	options	on	the	device.	Open	Android	Studio	and	select	several	devices	using	Wi-Fi	from	the	Start	Configurations	menu.	Figure	1.	Launch	the	configuration
menu.	A	Wi-Fi	window	for	evaporation	of	devices	will	appear,	as	shown	in	Figure	2.	On	your	device,	touch	the	wireless	network	debugging	option	and	connect	the	devices:	Figure	3.	Screenshot	showing	the	setting	of	the	wireless	network	debugging	on	Google	Pixel.	To	pair	the	device	with	the	QR	code,	select	a	paired	device	with	QR	code	and	scan	the
QR	code	obtained	from	paired	devices	via	a	jumping	Wi-Fi	window	(see	Figure	2).	To	pair	the	device	with	the	evaporation	code,	select	a	paired	device	with	a	pairing	code	from	among	paired	devices	in	the	Wi-Fi	window.Complete	the	conjugation	code	by	writing	down	the	six	-Di	code	provided.	When	the	device	appears	in	the	Wi-Fi	Device	Conjugation
window,	you	can	select	a	conjugation	and	enter	the	six-digit	code	displayed	on	the	device.	Figure	4.	Example	of	entering	a	six-day	code.	Once	the	device	is	coupled,	you	can	try	to	deploy	the	app	to	it.	To	conjugate	with	another	device	or	forget	the	current	device	on	the	workstation,	go	to	the	"Wireless"	section	on	your	device.	Tap	your	workstation
name	under	Connected	Devices	and	select	Forget.	If	you	want	to	turn	wireless	debugging	on	and	off	quickly,	you	can	use	the	wireless	debugging	quickset	developer	tiles	found	under	"Developer	Parameters",	"quick	settings	developer	moves".	Figure	5.	The	Quick	Settings	Developer	Items	parameter	allows	you	to	quickly	enable	or	disable	wireless
network	debugging.	Connect	to	WiFi	using	the	command	line.	Follow	the	steps	below	to	connect	to	your	device	via	command	line	without	Android	Studio.	Enable	developer	parameters	on	your	device	as	described	above.	Enable	wireless	debugging	on	your	device	as	described	above.	On	your	workstation,	open	a	terminal	window	and	navigate	to
Android_Sdk/Platform-Tools.	Find	your	IP	address,	port	number	and	conjugation	code	and	select	the	conjugation	code	device.	Note	the	IP	address,	port	number,	and	interface	code	displayed	on	the	device.	In	the	workstation	terminal,	run	adb	iPaddr:Port.	Use	the	IP	address	and	port	number	listed	above.	When	prompted,	enter	the	conjugation	code	as
shown	below.	Figure	6.	Message	informing	that	the	device	has	been	successfully	connected	to	it.	Troubleshooting	wireless	communication	If	you	are	having	problems	connecting	wirelessly	to	your	device,	try	the	following	solutions	to	resolve	the	issue.	Make	sure	your	workstation	and	device	meet	the	prerequisites.	Make	sure	your	workstation	and
device	meet	the	prerequisites	listed	at	the	beginning	of	this	section.	Check	other	known	issues.	Below	is	a	list	of	currently	known	wireless	debugging	issues	in	Android	Studio	and	how	to	resolve	them:	Wi-Fi	not	connected:	Some	Wi-Fi	networks,	such	as	corporate	Wi-Fi	networks,	may	block	P2P.	Connections	and	does	not	allow	you	to	connect	via	Wi-Fi.
Try	connecting	to	a	wired	or	other	Wi-Fi	network.	ADB	over	Wi-Fi	sometimes	turns	off	automatically:	this	can	happen	when	the	device	switches	the	Wi-Fi	network	or	turns	it	off.	To	eliminate	the	problem,	you	need	to	connect	to	the	network.	Connect	to	your	device	via	Wi-Fi	(Android	10	and	earlier).These	instructions	don't	apply	to	wear	and	tear	with
Android	10	(or	earlier).	For	more	information,	see.	Application	program	administrator.	ADB	usually	communicates	with	the	device	via	USB,	but	you	can	also	use	ADB	via	Wi-Fi.	If	you	want	to	connect	Android	versions	10	or	newer,	follow	these	initial	steps	using	USB:	Connect	Android	and	main	computer	to	Wi-fi	network.	Note:	Be	careful	that	not	all
access	points	are	suitable.	You	may	need	to	use	the	access	point	with	the	firewall	properly	configured	to	support	ADB.	Connect	the	device	to	the	main	computer	USB	cable.	Set	the	target	device	to	listen	for	TCP/IP	connection	to	port	5555:	ADB	TCPIP	5555	Unplug	the	USB	cable	from	the	target	device.	Find	the	Android	IP	address.	For	example,	you
will	find	the	IP	address	on	your	Nexus	device	in	Settings	>	Tablet	PC	(or	phone)	>	Status	>	IP	address.	Access	the	device	by	its	IP	address:	ADB	Connect	Device_IP_ADDRESS:	5555	Confirm	that	the	main	computer	is	connected	to	the	target	device:	$ADB	Device	Devices	connected	by	List_ip_Iddress:	5555	The	devices	are	now	connected	to	ADB.	If	the
ADB	connection	to	the	device	drops:	Make	sure	the	host	is	still	connected	to	the	same	Wi-Fi	network	as	the	Android	device.	Join	the	ADB	connect	action.	If	that	doesn't	work,	reset	the	host	ADB:	ADB	Killer,	start	from	the	beginning.	Requesting	the	device	before	issuing	ADB	commands	is	useful	to	know	which	instruction	samples	are	connected	to	the
ADB	server.	Account	Painer	Offered	in	support	with	device	team:	ADB	device	-l	In	response	to	this,	ADB	prints	the	following	device	status	information:	Serial	Number:	ADB	creates	a	line	to	make	the	device	uniquely	identified	by	its	number	of	door.	Here	is	an	example	of	a	serial	number:	Emulator-5554	Status:	The	device	status	can	be	one	of	the
following:	Offline:	The	device	is	not	connected	to	ADB	or	not	responding.	Device:	The	device	is	connected	to	the	ADB	server.	Please	note	that	this	does	not	mean	that	the	Android	system	is	fully	loaded	and	working	when	the	device	connects	to	the	ADB	system	on	startup.	After	starting	up,	this	is	the	normal	operating	state	of	the	unit.	No	Device:	No
device	is	connected.	Description:	If	you	include	the	-L	option,	command	devices	indicate	what	the	device	is.	This	information	is	useful	when	you	have	multiple	devices	connected	to	themThis	example	shows	the	command	and	the	output	of	the	devices.	There	are	three	work	equipment.	The	first	two	lines	of	the	list	are	stories	and	the	third	line	is	a
hardware	device	connected	to	your	computer.	A	team	of	unnecessary	ADB	devices	has	a	series	of	Angular	House	teams,	where	history	history	operates	at	the	ADB	devices	at	the	output,	even	if	the	narrators	appear	on	the	desktop.	This	happens	if	all	these	conditions	are	right:	the	ADB	server	does	not	work.	You	use	command	emulators	with	one
number	from	5554	to	5584	with	options	for	options	or	ports.	Since	the	only	port	of	your	choice,	the	port	connector	may	be	made	to	the	specified	port	number	or	busy	emulator	2	is	transferred	to	another	port	that	meets	2	emulator	requirements.	Run	the	ADB	server	when	the	emulator	starts.	One	way	to	avoid	this	is	to	choose	your	Portpoints	history
and	at	the	same	time	drive	up	to	16	floors.	Another	option	is	to	start	the	ADB	server	before	using	the	history	team	as	described	in	the	examples	below.	Example	1:	In	this	team,	the	Devices	ADB	team	launches	the	ADB	server,	but	the	list	of	devices	is	not	displayed.	Stop	the	ADB	server	and	enter	these	commands	procedures.	Enter	a	valid	AVD	name
from	your	system	name.	Enter	the	emulator	-Stravs	-VDS	to	get	the	AVD	list	of	names.	The	Story	team	is	in	Android_Sdk/Tools	directory.	$	Emulator	$	Kill	ADB	$	emulator	-avd	Nexus_6_api_25	-port	5555	ADB	List	of	Devices	List	connected	to	$	5555	Damon	does	not	work.	It	is	now	launched	in	point	5037	*	*	*	Successfully	*	Example	2:	In	this
command,	ADB	devices	show	the	device	list	as	the	ADB	server	starts	first.	Stop	the	ADB	server	to	show	the	emulator	ADB	devices	permit,	and	then	run	as	you	use	command	emulator	and	use	ADB	device	command:	5557	to	get	further	emulator	informationYou	can	find	the	options	under	the	command	line	boot	options.	If	you	are	running	more	than	one
device	to	a	particular	device,	you	must	specify	the	target	device	if	you	give	the	ADB	command.	To	specify	a	target,	follow	these	steps:	Use	the	devices	command	to	access	the	target	number	of	the	target.	After	receiving	the	serial	number,	use	the	-S	option	with	ADB	commands	to	specify	the	serial	number.	If	you	want	to	make	a	large	number	of	ADB
commands,	you	can	set	the	$	Android_serial	environment	variable	to	keep	the	serial	number	instead.	If	you	use	both	-s	and	$	Android_seri,	it	writes	on	-s	$	Android_serial.	The	following	example	calls	a	list	of	connected	devices	and	then	uses	the	serial	number	of	a	device	to	install	helloworld.apk	on	that	device:	$	ADB	List	of	Connect	Devices	Emulator
5554	Device	Emulator	555.	If	you	spend	multiple	devices	without	specifying	a	target	device,	ADB	displays	an	error.	If	you	have	multiple	devices,	but	if	you	have	only	one	storyteller,	use	the	option	-e	to	send	commands	to	the	story.	If	there	is	more	than	one	device,	but	if	only	one	hardware	device	is	connected,	use	the	option	to	send	commands	to	the
hardware	device.	You	can	use	ADB	to	install	the	application	with	the	installation	command	to	the	story	or	connected	device	to	the	story	or	connected	device.	You	can	find	more	information	about	T.	You	can	find	more	information	about	creating,	application	and	running	an	apk	file	that	you	can	upload	to	an	emulator/device	on	the	device.	Note.	If	you
are	using	Android	Studio,	you	do	not	need	to	use	ADB	directly	to	install	an	application	on	your	story	or	device.	Instead,	Android	Studio	undertakes	the	packaging	and	installation	of	the	application	for	you.	Structuring	Port	Routing	Use	the	routing	command	to	configure	any	port	route	that	transmits	the	requirements	of	a	particular	sport	to	another
connection	point	on	the	device.	The	following	example,	Host-Port	6100,	7100	to	transmit	to	the	device	to	the	connection	to	the	right-hand	settings:	ADB	Forward	TCP:	6100	TCP:	7100	This	example,	Host	6100	Local:	Logd:	ADB	Forward	TCP:	6100	Local:	Logd:	Logd.	If	you	are	trying	to	determine	what	is	sent	to	a	specific	device	port.	All	data	received
are	written	in	the	system	protocol	background	program	and	displayed	in	the	device	protocols.	Use	check	and	IT	commands	to	copy	files	from	the	device	and	device.Installer,	which	only	copies	the	APK	to	a	specific	location,	pull	and	push	commands	enable	you	to	copy	all	catalogs	and	files	to	every	location	on	your	device.	Perform	the	following	steps	to
copy	a	file	or	a	catalog	and	its	subcomputes	to	the	device:	ADB	Push	Local	Remote	Proceed	as	follows	to	copy	a	file	or	a	catalog	and	your	mounts	to	the	device:	ADB	Push	Local	Remote	Replace	LOCAL	and	Remote	with	Ways	To	Your	Tance	/	Catalogs	on	your	development	machine	(localized)	and	on	your	apprentice	(remote).	Example:	ADB	Push
myfile.txt	/sdcard/Myfile.txt	To	stop	the	ADB	server	in	some	cases,	it	may	be	necessary	to	end	the	ADB	server	process	and	then	restart	the	problem.	This	can	be	the	case,	for	example,	if	the	ADB	does	not	respond	to	the	team.	To	stop	the	ADB	server,	use	the	ADB	Kill	server	command.	Then	you	can	restart	the	server	by	entering	any	other	ADB
command.	Execution	of	ADB	commands	execute	ADB	commands	via	the	command	line	on	a	development	computer	or	via	the	script	with:	ADB	[-d	|	-e	|	-S	serial_nomer]	A	team,	if	only	an	emulator	is	launched	or	only	one	device	is	connected,	the	ADB	command	will	be	sent	to	this	device	by	default.	If	several	emulators	are	executed	and	several	devices
are	connected,	use	the	parameter	-d,	-e	or	-s	to	specify	the	target	device	to	which	the	command	is	to	be	directed.	With	the	following	command	you	can	display	a	detailed	list	of	all	supported	ADB	commands:	ADB-HELP	Shell	commands.	To	carry	out	a	command,	use	such	a	team	from	the	Shell:	ADB	[-d	|	-e	|	-S	serial_nomer]	Shell	command_water	To
start	an	interactive	shell	on	your	device,	use	the	command	Next	Command:	ADB	[-d	|	-e	|	-S	series	name]	Shell	to	leave	the	interactive	shell,	click	on	Ctrl	+	D	or	end	the	input	key.	Android	offers	the	most	common	Unix	command	line	tools.	Use	the	following	command	to	display	a	list	of	available	tools:	An	ADB	Shell	LS/System/Bin	aid	program	is
available	for	most	commands	via	a	helping	argument.	Many	Shell	teams	are	delivered	to	Toybox.	The	general	certificate	for	all	toybox	orders	is	available	via	Toybox	-	help.	In	Android	Platform	Tools	23	and	higher,	Bad	processes	the	same	arguments	as	SSH	(1).	This	change	eliminated	many	problems	when	entering	commands	and	enables	you	to
secure	commands	that	contain	metasim	vols,	such	as:	B.	the	installation	of	ADB.This	change	means	that	the	interpretation	of	all	commands	has	also	changed	that	contain	shell	metastals.	For	example,	the	ADB	shell	key	"SetProp"	is	now	an	error	because	the	native	shell	swallows	the	single	quotes	(')	and	the	device	sees	the	value	of	the	ADB	shell	key
"SetProp".	For	the	command	to	work,	you	need	to	quote	it	twice,	once	for	the	local	shell	and	once	for	the	remote,	like	with	SSH(1).	For	example,	the	“value”	of	the	BAD	environment	SetProp	key.	Also	look	at	the	command	line	tool	Logcat,	which	is	useful	for	syslog	monitoring.	Calling	Event	Manager	in	ADB	environment	can	be	used	to	use	Event
Manager	(AM)	tool	to	output	commands	to	perform	different	system	actions,	e.g.	.	The	AM	syntax	is	in	the	shell	command:	AM	You	can	also	enter	the	Activity	Manager	command	directly	from	ADB	without	switching	to	a	remote	shell.	Example:	ADB	shell	on	startup	-a	android.action.View	Table	1.	Available	activity	commands	Description	Start	[Options]
Intent	starts	the	activity	given	in	the	intent.	See	Specifications	for	deliberate	arguments.	The	options	are:	-d:	enable	debugging.	-W:	wait	for	initialization	to	complete.	-Profile	duge:	start	the	profiler	and	export	the	results	to	a	file.	-P	File:	How-Start	Profiler,	but	profiling	stops	when	application	is	idle.	-R	COMMINE:	Number	of	repetitions	of	the	start	of
the	event.	The	top	activity	is	completed	before	each	iteration.	-O:	forced	the	target	application	to	start	the	activity.	-	Openngl	Trace:	Enable	tracing	of	OpenGL	functions.	--User_id	|	Current:	indicate	which	user	should	be	performed	under	which	you	should	be	performed;	If	not	specified,	run	as	current	user.	Start	service	[Options]	Intent	starts	the
service	given	by	the	intent.	See	Specifications	for	deliberate	arguments.	The	options	are:	-User	ID	|	Currently:	Indicate	in	which	user	you	want	to	run.	If	not	specified,	run	as	current	user.	Force	Stop	Package	forces	everything	connected	to	the	package.	Final	Package	[Options]	Ends	All	processes	assigned	to	the	package.	This	command	only
terminates	processes	that	can	be	safely	terminated	and	does	not	affect	user	experience.	The	options	are:	-User	ID	|	All	|	Current:	Enter	completed	user	processes.	If	not	specified,	end	all	user	processes.	Kill-All	terminates	all	background	processes.	[Options]	Publish	the	publishing	intent	of	a	post.	See	Specifications	for	deliberate	arguments.	The
options	are:	[-User	ID	|	All	|	Currently]:	Enter	the	user	you	want	to	use.Down.	If	not	specified,	send	it	to	all	users.	Start	monitoring	the	input	component	with	the	sample	of	the	devices	[options].	Usually	the	target	component	is	The_test	Package/Class_uruchamiacz	form.	Available	in	the	following	options:	-R:	Redy	results	Write	(otherwise
Message_Key_streamResult	codes).	Use	it	with	[-e	Perf	True]	to	create	untreated	output	data	for	performance	measurements.	-E	Name	value:	Set	the	name	of	the	argument	to	value.	The	typical	form	of	trial	runners	is	-e	testrunner_flag	value	[,	value	...].	-P	file:	Save	your	profile	development	data	to	the	file.	-W:	Wait	for	the	equipment	before	returning.
Mandatory	test	runners.	-O-pencere	animation:	Close	window	animations	during	action.	-Sag	Descriptivive_użatek	is	current:	Determine	which	user	device	works.	If	not	specified,	run	it	as	a	valid	user.	Profile	Program	Start	Process	File,	Execute	Profile	Program	Process,	Save	the	result	file.	Stop	the	process	of	suspension	of	profiles.	DUPHEAP
[Options]	Processing	file	check	the	operation	pile	and	save	it	in	the	file.	Options:	-aye	[desktive_użatek	current]:	Specify	the	recession	process	by	specifying	the	title	of	the	process.	If	not	specified,	the	current	user	is	used.	-N:	Local	stock	package	is	a	problem,	not	a	bunch	of	control.	SET-DIG-APP	[Options]	Configuration	Program	Package	to
Disconnect	Errors.	Options:	-w:	Wait	for	Debger	by	starting	the	app.	-The:	Protect	this	value.	Clean	the	previous	error	discovery	package	using	Clear-Debug-App	Set-Debug-App.	Observe	[Option]	Start	watching	anR	errors	or	errors.	Current	Options:	-GDB:	Start	at	the	GDSBERV	connection	point	at	the	time	of	failure/anr.	Compatible	with	stage	{na	|
Close}	Package	control	screen	package	mode	compatibility	mode.	Screen	Size	[Platexheight	Recovery]	Changes	the	device	screen	size.	This	command	is	useful	to	test	programs	with	different	screen	sizes,	model	the	low	screen	resolution	using	a	high	screen	device	and	vice	versa.	Example:	Screen	Size	AM	1280x800	DPI	screen	density	changes	the
device's	image	density.	This	team	is	useful	to	test	programs	with	different	screen	densities	that	mimic	the	high	density	screen	environment	using	a	low	density	screen.	Example:	Screen	density	AM	480	intention-to,	intentions	printed	as	URI.	Look	at	the	specification	of	the	intention	argument.	To-to-intention,	the	signs	of	intention	indicated	as
intention:	URI.	Look	at	the	specification	of	the	intention	argument.	The	intention	can	be	determined	using	the	intention	to	specify	the	Action	Manager	team's	argument	using	the	following	options:	Show	everythingAction	Define	the	intended	action,	for	example	android.intent.action.view.	It	can	only	be	declared	once.	Specify	the	URI	of	the	intent,	such
as	-D	data_uri	Content://contact/people/1.	It	can	only	be	declared	once.	-T	type_mime	Specify	the	intended	MIME	type,	such	as	image/png.	It	can	only	be	declared	once.	-C	category	Specify	the	intent	category	as	android.intent.category.App_contacts.	-N	component	To	create	an	explicit	intent,	specify	the	component	name	prefixed	with	the	package
name,	such	as	com.examsample.app/.exampleactivity.	The	-F	flags	add	flags	to	your	intents	supported	by	setflags().	-Extra_key	adds	an	extra	null.	This	option	is	not	supported	for	URI	purpose.	-e	|	-extra_key	extra_string_value	adds	a	data	array	as	key	value.	-extra_key	extra_boolean_value	adds	boolean	data	as	a	key-value	pair.	-EI	extra_key
extra_int_value	adds	the	combined	data	as	a	key-value	pair.	-Extra_key	extra_long_value	adds	long	data	as	a	key	language	pair.	-Ef	extra_key	extra_float_value	adds	floating	point	data	as	a	key-value	pair.	-Eu	extra_key	extra_uri_value	adds	the	URI	data	as	a	key-value	pair.	-ECN	extra_key	extra_component_name_value	Add	the	converted	and	passed
component	name	name.	-EIA	extra_key	extra_int_value	[,	extra_int_value	...]	Add	integers.	-Extra_key	extra_long_value	[,	extra_long_value	...]	Add	a	long	clipboard.	-Efa	extra_key	extra_float_value	[,	extra_float_value	...]	Add	floating	point.	Add	the	-granant-read-device	the_grant_read_uri_permission	flag.	-Grant-Write-URI-PERMATION	with	the
flag_grant_write_uri_permission	flag.	-debug-log-areolution	with	flag_debug_log_Definition.	-Eklot	hanging	packages.	Add	-klude-stopped-packages	flag_include_stopped_packages.	-The	activity	has	been	brought	forward.	-	Activity-clear-top	opens	flag_activity_clear_top.	-Activity-clean-time-flashes.	-Add	ActiVite-CLOCUDE-no-receents
flag_activity_exclude_from_rents.	-Event	started	from	history	Add	flag	Flag_activity_Launched_From_History.	Add	-activity-multiple-task	flag_activity_multiple_task.	Event	animation	with	flag	-FLAG_ACTIVITY_NO_ANIATION.	Add	-A	Activity-nohistory	flag_activity_from_history.	Add	-Enable-a-user-Action	flag_activity_from_user_action.Add	the
flag_activity_	previous_is_top	flag.	-Activity-reorder-front	contains	flag_activity_reorder_to_front.	-Activity-Reset-Task-si	A	flag	is	required	to	add	flag_activity_reset_task_if_needed.	Contains	the	flag	-activity-top-TOP	FLAG_ACTIVITY_SINGLE_TOP.	-Contact-Cast-thak	contains	flag_activity_clear_task.	The	-activity-on-home	flag	contains
flag_activity_task_on_home.	-	Add	receiver	only,	add	flag_receiver_registerred_only.	Contains	the	default	flag	--Ceiver-Repalace	FLAG_RECEIVER_REPLAY_PENDED.	-Select	requires	the	use	of	the	-d	and	-t	options	to	define	the	data	type	and	intent.	Component	Package	URI	You	can	specify	the	URI,	package	name,	and	component	name	directly	if	they
are	not	qualified	by	any	of	the	previous	options.	If	the	argument	is	not	qualified,	the	tool	assumes	that	the	argument	is	a	Uri	if	it	contains	a	":"	(colon).	The	tools	assume	the	name	of	the	component	if	the	argument	contains	a	"/"	(slash);	Otherwise,	the	argument	is	assumed	to	be	the	name	of	the	package.	Look	for	Package	Manager	(PM)	in	the	ADB
Shell,	you	can	order	with	the	Package	Manager	(PM)	tool	to	process	and	request	the	application	packages	installed	on	the	device.	In	a	shell,	using	the	PM:	PM	syntax,	the	command	allows	you	to	directly	order	the	package	manager	from	Bad	without	invoking	a	remote	shell.	For	example:	ADB	Shell	PM	Uninstall	Com.	Example.	Options:	-F:	See
associated	file.	-D:	Filter	will	only	show	banned	packages.	-E:	filter	only	shows	allowed	packages.	-S:	Filter	only	shows	system	packages.	-3:	Filter	to	show	only	third-party	packages.	-I:	Look	at	the	package	installer.	-U:	Add	uninstalled	packages.	-User_id:	User	field	to	query.	Print	all	known	permission	groups	with	a	list	of	permission	groups.	Individual
permissions	[options]	Print	all	known	permissions,	only	in	groups	if	necessary.	Options:	-g:	Sort	by	group.	-F:	Print	all	information.	-Q:	Short	summary.	-D:	List	only	dangerous	permissions.	-U:	List	of	permissions	that	only	users	can	see.	Instrument	list	[options]	List	of	all	test	packages.	Options:	-F:	Transform	apk	file	for	test	suite.	Target_package:	List
only	the	test	packages	for	this	application.	Property	List	Prints	all	system	properties.	List	of	libraries	Print	all	libraries	supported	by	the	current	device.Users	print	all	system	users.	Path	Pack	prints	the	way	to	the	package	APK.	[Options]	Install	the	road	system.	Options:	-r:	Reinstall	the	existing	application	and	store	the	data.	-T:	Activate	the
installation	of	the	test	apk.	Gradle	creates	the	APK	test	file	when	you	start	or	define	it	or	use	Build>	Build	Apk	in	Android	Studio.	If	the	APK	file	developer	is	created	using	the	SDK	Preview,	you	need	to	add	the	-T	option	to	install	if	you	install	the	APK	test	file.	-I	name_instaling_ball:	Enter	the	name	of	the	installation	package.	-Renge	the	installation
position	using	one	of	the	following	elements:	0:	Use	the	default	installation	position.	1:	Installation	in	the	internal	storage	of	the	device.	2:	Define	an	external	environment.	-F:	Download	the	package	in	the	memory	of	the	internal	system.	-D:	Activate	the	version	of	the	code	of	the	descent.	-G:	Create	all	the	authorizations	listed	in	the	application.	-
Fastdeploy:	Quick	update	of	the	installed	update	package	was	only	modified	from	the	APK	file.	-Suumal:	Download	enough	APK	file	to	start	the	application	when	transferring	the	remaining	data	in	the	background.	To	use	this	feature,	you	must	sign	the	APK	file,	create	the	APK	signature	diagram	for	the	V4	file	and	place	this	file	in	the	same	directory	as
the	APK	file.	This	function	is	supported	only	on	certain	devices.	This	option	indicates	that	if	the	BAD	is	not	supported	by	explicit	information	on	the	reasons	why	it	fails,	it	is	used	or	fails.	Before	accessing	the	APK	file,	the	APK	file	is	fully	installed,	add	the	waiting	option	and	allow	the	APK	file	fully	installed.	-Preavants	the	use	of	this	function.	[Options]
deletes	the	system	package.	Options:	-K:	After	deleting	the	package,	store	the	data	and	cache	directory.	Remove	the	Package	Delete	all	the	data	associated	with	the	package.	Active	the	package	or	the	component	Packe_or_Ccomponent	(written	in	"Package	/	Class").	Pack_or_Ccomponent	Disables	the	package	or	the	component	(written	in	"package	/
class").	Disable	users	[Options]	Package_or_Ccomponent	Options:	-es	User_id:	User	Deactivate.	Name_Balíčku	grants	application	permits	to	authorize.	Android	6.0	(API	23)	and	higher	devices	may	be	allowed	to	authorize	the	authorizations	listed	in	the	manifestation	of	the	application.	Android	5.1	(API	22)	and	lower	devices	must	have	an	option	for	a
specific	application.	Revoke	Package_Name	cancels	its	authorization	for	the	application.	Android	6.0	(API	23)	andLaw	can	be	any	right	declared	in	the	manifesto	of	the	application.	Devices	with	Android	5.1	(API	22)	and	below	must	have	additional	permits	determined	by	the	application.	SET-STAR-STAR-LOCATION	Change	in	default	installation	site.
Element	of	value:	0:	Auto:	Let	the	system	choose	the	best	position.	1:	Internal:	installation	in	the	internal	memory	of	the	device.	2:	External:	sending	to	the	external	medium.	Note.	This	is	only	for	debugging.	Its	use	can	cause	applications	and	other	undesirable	actions.	Location	Get-Innstall	returns	the	current	installation	location.	Returned	values:	0
[Auto]:	Let	the	system	select	the	best	location	1	[internal]:	installation	in	the	internal	memory	of	the	device	2	[external]:	included	by	the	external	media	settings	[True	|	FALSE]	specify	whether	this	right	should	be	used.	Desired_wolna_ploczenia	priests	cache	to	achieve	a	certain	free	space.	Create-User	Name_Writer	creates	a	new	user	with	a	given
user	name,	printing	a	new	user	identifier.	Delete	user_id	Delete	a	user	with	a	given	user_id	delete	all	the	data	related	to	this	Get-Max	user	to	display	the	maximum	number	of	users	supported	by	the	device.	Get	-pp	-links	[option]	[package]	derive	the	status	of	a	domain	check	for	a	given	package	or	for	all	packages,	if	no	one	is	indicated.	The	state	codes
are	determined	as	follows:	no:	nothing	is	registered	for	this	domain.	Updated:	updated:	updated:	updated:	updated:	updated:	updated:	updated:	updated	updated.	:	Legacy_failure	User	data:	rejected	by	the	senior	verifier,	the	reason	is	unknown	to	System_ConfireD:	automatically	approved	by	the	configuration	of	the	device>	=	1024:	Non	-standard
error	code	characteristic	of	the	device:	-user	user_id:	Add	the	user's	choice.	Consider	all	the	fields,	not	just	automate	the	fields.	Reset	-pp	-Links	[Parameters]	[package]	reset	the	state	of	the	domain	check	for	a	given	package	or	for	all	packages,	if	no	one	is	indicated.	Package:	Add	“All”:	-user	user_id:	user	option	to	reset	the	package	or	all	package
parameters.	Consider	all	the	fields,	not	just	automate	the	fields.	Verify	-pp-Links	[-re-riverify]	[Package]	sends	a	request	for	a	test	for	this	package	or,	if	not,	the	check	request	was	made	for	all	packages.	It	is	sent	only	if	the	package	has	not	previously	been	registered.	-Re-the-dify:	Send,	even	if	a	packageresponse	set-app-links	[--package	package]
state	domains	manually	sets	the	state	of	a	package	domain.	For	this	to	work,	the	package	must	have	the	domain	declared	as	automated.	This	command	does	not	report	errors	on	domains	that	do	not	match.	-package	package:	package	to	define	or	"all"	to	define	all	packages.	State:	Domain	configuration	code.	Valid	values	are:	State_no_response	(0):
reset	as	if	no	response	was	recorded.	State_success	(1):	Treat	the	domain	as	successfully	verified	in	the	Domain	Validator.	Note	that	this	can	be	ignored	by	the	domain	validation	agent.	State_approved	(2):	Always	treat	the	domain	as	approved,	which	prevents	the	domain	validator	from	changing.	State_denied	(3):	Always	treat	the	domain	as	denied,
which	prevents	you	from	modifying	the	domain	verification	agent.	Domains:	list	of	domains	reserved	for	the	domain	to	be	edited	or	"all"	to	edit	any	domain.	Set-App-Links-User-Section	--user	User_id	[-Package	Package]	Active	domains	manually	set	package	primary	user	selection	status.	A	package	must	declare	a	domain	for	this	to	work.	This
command	does	not	report	fault	domains	that	are	not	enforced.	--User	USER_ID:	Modify	user	package	selection	Package:	Enabled	package	to	be	set:	Approve	domain	domains	to	be	confirmed:	List	of	domains	to	be	modified	or	any	defined	domain	application	links	user	section	--user	USER_ID	[-package	package]	Enabled	domains	set	manually
energetically	user	selection	status	for	the	package.	A	package	must	declare	a	domain	for	this	to	work.	This	command	does	not	report	fault	domains	that	are	not	enforced.	--User	USER_ID:	change	user	package	selection	Package:	active	package	to	set:	validate	domain	Domains	to	validate:	list	of	domains	to	modify	or	any	domain	Set-App-Links-Irared-
user	User_id	[-package-package]	is	allowed	to	change	the	Verified	Links	Management	setting.	--user	user_id:	user-package-package:	change	package	selection	to	set	or	"all"	to	set	all	packages;	If	packages	are	not	specified,	packages	are	reset:	true	to	allow	package	to	automatically	open	authenticated	links,	false	to	disable	app-link-link-owner	user_id
[-package	package]	domains	for	given	user	by	order	low	or	high	priority.	--USER	USER_ID:-Package	User	to	query	package:	also	optionalFor	all	Internet	domains	declared	in	a	bundle,	or	"all"	to	print	all	domain	bundles:	The	space	is	separated	by	the	Device	Policy	Manager	(DPM)	query	domain	list.	Use	the	tool	to	control	Active	Administrator	or
change	device	policy	status	information.	Team	DMP.	Table	3.	Possible	description	of	device	policy	teams	with	activity-admin	[Options]	The	component	specifies	the	component	as	an	active	administrator.	The	options	are:	-	-Consumer_ID:	Enter	the	target	user.	You	can	also	move	the	current	stream	and	select	the	current	user.	SET-Profile	component
[Option]	Set	the	component	as	the	active	administrator	and	its	package	as	the	owner	of	the	current	user	profile.	The	options	are:	-	-Consumer_ID:	Enter	the	target	user.	You	can	also	move	the	current	stream	and	select	the	current	user.	-Name:	Enter	the	name	of	the	organization	to	read.	Component	SOT-Device	Owner	[Optional]	Set	the	component	as
the	active	manager	and	its	package	as	the	device	owner.	The	options	are:	-	-Consumer_ID:	Enter	the	target	user.	You	can	also	move	the	current	stream	and	select	the	current	user.	-Name:	Enter	the	name	of	the	organization	to	read.	Remove	the	Actived-admin	component	[Optional]	to	exclude	the	active	administrator.	The	program	needs	to	inform
Android:	Test	Manifest.	This	team	also	removes	device	and	profile	owners.	The	options	are:	-	-Consumer_ID:	Enter	the	target	user.	You	can	also	move	the	current	stream	and	select	the	current	user.	ClearFrize-Eeriod	Clear	the	set	freeze	period	for	device	logging	system	updates.	This	is	useful	to	avoid	the	scheduling	constraints	of	developing	frost
management	programs.	See.	System	update	management.	Supported	on	devices	running	Android	9.0	(API	level	28)	and	above.	Force-Norwork-Log	forces	the	system	to	prepare	existing	network	logs	for	DPC.	If	there	is	a	connection	or	DNA	logs,	DPC	receives	OnNetWorkKLogSeailable()	with	return	date.	See.	Recording	of	network	activities.	This	team
is	speed	limited.	Supported	on	devices	running	Android	9.0	(API	level	28)	and	above.	Power-sequential-rock	makes	the	system	support	all	existing	DPC	security	protocols.	If	the	logs	exist,	the	DPC	will	receive	the	reverse	ScurtryLogsavaille()	communication.	See.	Warehouse	companyActivity.	This	command	is	limited	to	speed.	Supported	on	devices
running	Android	9.0	(API	28)	and	higher.	Payment	Screenshot	is	a	shell	utility	for	taking	screenshots.	Shell	is	screencap	syntax:	screencap-filename	To	use	the	screencap	string,	type:	ADB	Shell	Screencap	/sdcard/screen.png	Here	is	the	screencap	session:	$	ADB	Shell@	$	Screencap	/sdcard/screen.png	Shell@	$	Exit	$	ADB	Pull	/	sdcard/screen	.png
Load	Video	Command	Screencord	is	a	shell	utility	for	recording	devices	running	Android	4.4	(API	19)	and	later.	The	tool	records	screen	activity	in	an	MPEG-4	file.	You	can	use	this	file	to	create	promotional	or	training	videos,	or	for	debugging	and	testing.	In	a	shell	environment,	use	the	following	syntax:	ScreenRecord	[options]	SOPOR_NAME	To	use
ScreenRecord	from	the	command	line).	Otherwise,	the	recording	will	stop	automatically	after	three	minutes	or	the	time	limit	specified	by	the	time	parameter.	To	start	streaming	your	device's	screen,	run	the	ScreenRecord	command	and	upload	the	video.	Then	run	the	pull	command	to	download	the	video	from	the	device	to	the	host	computer.	Here	is
an	example	recording	session:	$	ADB	Shell@	$	ScreenRecord	--verbose	/sdcard/demo.mp4	You	need	transfer	speed	while	maintaining	the	device's	display	ratio.	By	default,	the	tool	records	in	the	native	screen	resolution	and	orientation	with	a	maximum	length	of	three	minutes.	Limitation	of	ScreenRecord	tool:	The	video	is	not	recorded	along	with	the
video.	Videos	are	not	available	on	Wear	OS	devices.	Some	devices	may	not	be	able	to	record	the	screen	in	their	native	resolution.	If	you're	having	trouble	recording	your	screen,	try	a	lower	screen	resolution.	Screen	rotation	during	recording	is	not	supported.	If	the	screen	rotates	during	recording,	some	parts	of	the	screen	will	be	cut	off	in	the
recording.	Table	4.	Screen	capture	options	Options	-HELP	VALUE	Syntax	and	command	options	-WidthxHeight	Sets	the	image	size	to	1280x720.	The	default	value	is	the	internal	value	of	the	deviceResolution	(if	served),	1280x720,	if	not.	To	get	the	best	results,	use	the	size	of	the	device	supported	by	the	advanced	video	coding	code	(AVC).	-BiRTrate
adapt	video	to	bits	in	megabits	per	second.	The	default	value	is	4	Mb/s.	You	can	increase	the	transmission	speed	to	improve	image	quality,	but	this	will	increase	movie	files.	In	the	example	below,	recording	bits	are	set	to	6	Mb/s:	screen	recording	-	transmission	speed	6000000	/SDCARD/DEMO.MP4	-	time	limit	set	the	maximum	recording	time	in
seconds.	The	default	and	maximum	value	is	180	(3	minutes).	-	Move	the	output	90	degrees.	This	function	is	experimental.	-	Display	information	from	the	journal	in	the	command	line	on	the	screen.	If	you	do	not	set	this	option,	the	program	will	not	display	any	information	during	operation.	Reading	of	artistic	profiles	in	the	Programs	version	7	Android
(API	level	24),	the	executive	environment	of	the	Android	(Art)	system	accumulates	used	programs	profiles	used	to	optimize	program	performance.	Analyze	the	collected	profiles	to	understand	which	methods	are	often	made	and	which	classes	are	used	when	starting	the	program.	Note:	The	performance	profile	file	header	can	only	be	scanned	if	you
have	the	administrator's	permissions	to	the	file	system	such	as	the	emulator.	Use	the	following	command	to	generate	a	profile	information	sheet:	ADB	Shell	CMD	Package	Dump	Profiles	Package	to	scan	the	file:	adb	pull	/data/profman/package.trof.txt	Reset	Reet	Testers.	Try	the	program	on	many	testers,	it	may	be	helpful	to	reset	the	device	between
tests,	e.g.	B.	Removing	user	data	and	reset	the	test	environment.	You	can	restore	the	factory	test	configuration	with	Android	10	(API	level	29)	or	newer	using	the	Testharness	ADB	Shell	team,	as	shown:	ADB	Shell	CMD	Testharness	after	restoring	the	device	using	Testharness,	the	device	will	automatically	create	a	spare	RSA	key.	It	allows	you	to
connect	the	existing	working	area	in	the	established	location.	This	means	that	after	configuring	the	device,	the	workstation	can	still	configure	and	give	ADB	commands	on	the	device	without	registering	a	new	key.	In	addition	to	facilitating	and	increasing	the	safety	of	continuation	of	the	program	testing,	the	following	settings	are	modified	using	the
test	lines	to	recover	the	device:	the	device	adjusts	some	system	settings	to	prevent	the	appearance	of	creators	of	pre	-configuration	of	the	device.	This	means	that	the	device	enters	a	state	in	which	you	can	quickly	load,	assemble	and	test	the	program.	Ideas:Screen	lock.	Deactivating	emergency	warnings.	Automatically	deactivate	synchronization	for
accounts.	Deactivate	the	automatic	system	updates.	Other:	deactivation	of	pre	-installed	security	applications.	If	your	application	should	recognize	and	adapt	to	the	default	settings	of	the	testharness	command,	use	the	activitymanager.isruninginSertestarnest	().	SQLite	SQLite3	launches	the	SQLite	command	program	and	studies	SQLite	databases.	It
contains	commands	such	as	.Dump	to	print	table	content	a.	Create	SQL	printing	scheme	for	an	existing	table.	You	can	also	start	SQLite	commands	through	the	command	line	as	shown:	$	adb	-emuletal	-5554	Shell	$	sqite3	/data/com.example.app/database/rsitems.db	SQLite	version	3.3.12	Access	to	SQLite	database	only	if	you	have	access	to	the	file
system,	such	as	the	emulator.	More	information	can	be	found	at	the	SQLite3	command	lines.	Documentation.

